What to Say When: Influencing Consumer Choice by Delaying the Presentation of Favorable Information

XIN GE
GERALD HÄUBL
TERRY ELROD

A common intuition is that sellers ought to provide consumers with favorable information about their offerings as early as possible. This is consistent with the notion that people’s interpretation of new evidence is often biased in a manner that confirms their prior beliefs (Klayman and Ha 1987; Lord, Ross, and Lepper 1979) and supported by research on the pre-decisional distortion of information (Russo, Medvec, and Meloy 1996; Russo, Meloy, and Medvec 1998). We argue that, when consumers use a multistage choice process, it is not necessarily in the seller’s interest to immediately reveal all favorable information about its offering. Indeed, our key hypothesis is that an alternative (e.g., a brand, a store, or a service provider) can benefit from deliberately delaying the presentation of some favorable information about itself until after consumers have completed their pre-choice screening of alternatives.

Prior work has shown that decision makers tend to attach greater weight to information that becomes available after an initial screening of the alternatives (Chakravarti, Janiszewski, and Ülkümen 2006; Van Zee, Paluchowski, and Beach 1992). However, that research was confined to situations in which additional information about all alternatives is presented at the final choice stage. By contrast, the present article focuses on information delay that is selective—that is, limited to one of the alternatives—rather than across the board, and it examines how the delayed presentation of favorable information about a particular alternative affects consumer choice. While such a delay tends to reduce an alternative’s chance of surviving the screening, we propose that the increase in the alternative’s chance of being chosen resulting from the introduction of additional favorable information about it after the screening has occurred can more than compensate for that initial disadvantage.

This article is organized as follows. First, we briefly review relevant prior work on information integration and order effects, as well as on multistage decision processes. We then...
develop our key hypothesis—that is, that delaying the presentation of some favorable information about an alternative until the final choice stage can enhance consumer preference for that alternative. In addition, we identify three distinct mental mechanisms that might drive this effect. We then present evidence from five experiments. The findings provide clear support for the predicted overall effect, and they illustrate the underlying preference dynamics across decision stages. They also allow us to assess each of the three candidate mechanisms in terms of its ability to account for the observed choice behavior. The article concludes with a brief discussion of the theoretical and practical implications of our findings.

THEORETICAL BACKGROUND

Information Integration and Order Effects

In seeking to understand the effect of the delayed presentation of favorable information on consumer choice, it is worth considering what is known about how humans integrate multiple pieces of evidence about an object or a person. Much of the research in this area has examined the integration rules—for example, adding versus averaging—that decision makers use to combine multiple pieces of evidence into an overall assessment (Anderson 1967, 1981; Asch 1946; Lopes 1985; Lynch 1985; Shanteau 1975).

A key question within the domain of information integration is how the order of presentation influences the manner in which pieces of information are processed and, in particular, the weight that a decision maker attaches to them in forming an overall assessment (Anderson and Norman 1964; Haugtvedt and Wegener 1994; Hogarth and Einhorn 1992). Prior research has produced evidence of both the first and the last pieces of information to be presented receiving greater weight—that is, of primacy and recency effects. For instance, in the context of evolving brand evaluations, Johar, Jedidi, and Jacoby (1997) found that consumers’ final judgments were affected more strongly by information encountered later rather than earlier. However, there is also considerable evidence suggesting that information seen earlier can be relatively more important. Examples of this include work on the foot-in-the-door effect, where complying with a small initial request renders people more likely to comply with a larger subsequent request of a similar type (Freedman and Fraser 1966); on anchoring and (insufficient) adjustment, resulting in final judgments that are too close to (even arbitrary) initial anchor values (Epble and Gilovich 2006; Tversky and Kahneman 1974); and on the pre-decisional distortion of information, where initially presented information has an undue influence on the eventual assessment of alternatives (Carlson, Meloy, and Russo 2006; Russo et al. 1996, 1998).

The present research contributes to the literature on information integration and order effects by enriching it with a multistage decision perspective. In particular, it sheds light on how delaying the presentation of some favorable information about an alternative affects the ultimate attractiveness of that alternative to decision makers.

Multistage Decision Processes

Many decisions are made via mental processes that involve multiple stages. Typically, such decision processes consist of two stages (Beach 1993, 1998; Beach and Mitchell 1987; Bettman and Park 1980; Häubl and Trifts 2000; Payne 1976). The first of these is devoted to eliminating alternatives that do not warrant serious consideration (screening), and the second is aimed at identifying the best alternative among those considered (final choice). In the context of consumer choice, work on the formation of a consideration set as an intermediate step toward making a purchase decision has examined the economic and psychological reasons for such a partitioning of the decision process into smaller subtasks (Chakravarti and Janiszewski 2003; Hauser and Wernerfelt 1990; Roberts and Lattin 1991).

The manner in which information is processed may differ systematically between the two decision stages (Payne 1976; Potter and Beach 1994). For instance, decision makers tend to use noncompensatory heuristics to eliminate alternatives from further consideration at the screening stage and switch to a compensatory evaluation of the remaining alternatives when making their final choice (Bettman, Luce, and Payne 1998; Gilbride and Allenby 2006; Payne, Bettman, and Johnson 1988, 1993). As a consequence, whether and how a particular piece of information about an alternative is processed depends, among other things, on the decision stage.

While most prior work on multistage decision making used a paradigm in which complete information about all alternatives is available to decision makers from the start (i.e., before any screening occurs), a few studies have examined situations where new information is introduced at the final choice stage (Chakravarti et al. 2006; Van Zee et al. 1992). These latter studies revealed that information presented only after some screening has taken place has a greater impact on the ultimate assessment of the considered alternatives than the information that was already available prior to screening. These findings suggest that information tends to be ignored once it has been used as a basis for the initial screening of alternatives (Van Zee et al. 1992) and that screening increases the perceived similarity of the surviving alternatives in terms of the prescreening information (Chakravarti et al. 2006).

The research presented here is the first to examine how delaying the presentation of information about one alternative until the initial screening has been completed affects consumer preference for that alternative. This is in contrast to the studies by Chakravarti et al. (2006) and Van Zee et al. (1992), in which additional information about all available alternatives was introduced at the final choice stage. By focusing on delay that is limited to one alternative, the present work is the first to examine how a seller might influence consumers’ choices in its own favor by deliberately deferring the presentation of some favorable information about its offering until consumers have narrowed their choice set to include only the most promising alternatives.

DELAYED PRESENTATION OF FAVORABLE INFORMATION AND CONSUMER CHOICE

The Overall Effect

The impact on consumer choice of delaying the presentation of some information about an alternative until after the initial screening has been completed is jointly determined by two influences: (1) its effect on the probability of the alternative surviving the screening stage and (2) its effect on the probability of the alternative being chosen at the final stage given it has survived the screening stage. We consider each of these in turn.

Delays in the presentation of some favorable information until the final choice stage implies that fewer pieces of favorable information about the focal alternative are known to consumers at the screening stage. As the perceived attractiveness of an alternative is a function of the number of its (known) desirable and undesirable features (Alba and Marmorstein 1987; Zhang, Hsee, and Xiao 2006), the delay of favorable information about an alternative reduces its probability of surviving the screening stage. Moreover, if consumers detect the incompleteness of the information presented at the screening stage, this may have an additional adverse effect on their evaluation of the alternative about which information is delayed (Johnson and Levin 1985; Sanbonmatsu, Kardes, and Herr 1992; Simmons and Lynch 1991). Thus, we expect the delay of favorable information about an alternative to reduce the alternative’s probability of being included in the final choice set.

If an alternative survives the screening, any delayed information about it is presented for the first time at the final choice stage. We propose that the delayed presentation of favorable information about a surviving alternative increases consumer preference for that alternative. This is in line with the idea that information that is processed later tends to have greater influence when evaluation processes are partitioned into multiple steps (Hogarth and Einhorn 1992) and with prior work suggesting that information used in the initial screening of alternatives has a reduced impact on final evaluations (Chakravarti et al. 2006; Van Zee et al. 1992). Moreover, the proposed effect is consistent with the notion that decision makers tend to focus on rejecting undesirable alternatives in screening and on selecting desirable alternatives in making a choice (Heller, Levin, and Goransson 2002; Ordóñez, Benson, and Beach 1999), which implies greater emphasis on desirable than on undesirable features of the alternatives at the final choice stage (Meloy and Russo 2004; Shafir 1993). All of this suggests that the delayed presentation of favorable information about a surviving alternative once pre-choice screening has occurred increases preference for that alternative at the final choice stage.

The overall impact of the delayed presentation of some favorable information about an alternative on consumer choice is determined by the interplay between (1) the negative effect of the delay on the probability of the alternative surviving the screening stage and (2) the positive effect of the additional information presented at the final choice stage on the probability of the alternative being chosen conditional on it having survived the screening. If the positive influence of the delayed presentation of favorable information on final choice more than compensates for the reduction in the probability of the alternative surviving the screening, such a delayed presentation increases the overall (i.e., unconditional) probability of the alternative being chosen.

The trade-off between reducing an alternative’s probability of surviving the screening stage and increasing its probability of being selected at the final choice stage suggests an important boundary for the benefits of delaying the presentation of favorable information—if too much favorable information is delayed, the alternative is so unlikely to be considered at the final choice stage that the positive influence of the additional favorable information introduced at that point will not offset the harm done at the screening stage. However, our key hypothesis is that there exists a “sweet spot” such that delaying the presentation of an appropriate amount of favorable information about an alternative increases the overall (i.e., unconditional) probability of that alternative being chosen relative to the case where consumers are already provided with a complete description of it before they do any screening. While it is impossible to make general statements about the optimal amount of delay, the experiments presented in this article involved the delayed presentation of a relatively small number of pieces of information (i.e., one or two out of nine) about an alternative.

Candidate Mechanisms

We propose three distinct mechanisms that might underlie the preference-enhancing effect of the delayed presentation of favorable information about an alternative at the final choice stage. More than one of these candidate mechanisms may operate concurrently to drive the effect.

Mechanism 1: Recency Effect. One way in which the delayed presentation of favorable information about an alternative might affect the latter’s probability of being chosen is by causing the specific piece(s) of information introduced after the screening stage to have a greater impact on consumers’ ultimate evaluation of the alternative than would be the case had that information been available earlier. This candidate mechanism is an instance of the familiar recency effect (Baddeley and Hitch 1993; Davelaar et al. 2005; Mordock 1962), whereby a stimulus becomes more salient and/or has greater influence on an overall judgment merely because it has been encountered more recently—that is, closer to the time at which the judgment or decision is made. A recency effect is datsum-specific, in that it is limited to the particular piece(s) of information that are presented after a delay and does not involve a change in the importance weights that consumers attach to the different attribute dimensions or an increase in consumer attention to an alternative as a whole.
Mechanism 2: Weight Shift. A second candidate mechanism through which the delayed presentation of favorable information about an alternative might influence consumer choice is by increasing the importance or decision weight of the particular attribute dimension(s) on which additional information is introduced after the screening stage. In the case of such a weight shift effect, the influence of any attribute dimension affected by the delay is amplified across all surviving alternatives, irrespective of whether information about them on that dimension was delayed. This is in line with the notion of preferences being constructed based on contextual factors (Bettman et al. 1998; Payne, Bettman, and Johnson 1992; Slovic 1995) and the typical operationalization of a preference construction effect as a shift in the decision weights of particular attribute dimensions (Häubl and Murray 2003; Mandel and Johnson 2002; Tversky, Sattath, and Slovic 1988). Thus, in contrast to the recency effect, the weight shift mechanism implies that delayed presentation of information about one of the alternatives on a particular attribute dimension increases the weight consumers attach to that dimension in evaluating all remaining alternatives at the final choice stage.

Mechanism 3: Alternative Boosting. A third way in which a delay in the presentation of information might affect an alternative’s probability of being chosen is by making the alternative as a whole more salient relative to a “static” competitor for which no additional information becomes available at the final choice stage. Prior work suggests that greater visual salience of an object or individual can result in a more favorable evaluation of the latter (Lassiter et al. 2002, 2007; Pryor and Kriss 1977; Taylor et al. 1979). For instance, it has been shown that observers of a dyadic conversation form more favorable impressions of the more salient conversationalist and perceive the latter to be more likeable (Taylor et al. 1979). Similarly, in the domain of consumer choice, Hamilton, Hong, and Chernev (2007) have found that making an alternative more salient (through the introduction of additional alternatives) can lead to an increase in its perceived attractiveness and in its relative choice share. Such salience effects are deemed to be driven largely by automatic processes, and they occur even when an individual is distracted and unable to recall details about the more prominent alternative (Taylor et al. 1979). In line with this, the delayed presentation of information about an alternative might enhance preference for that alternative by increasing the latter’s salience at the final choice stage. Such an alternative boosting mechanism has the property that the alternative becomes more likely to be chosen, controlling for how favorable the delayed information actually is. Thus, in contrast to both recency and weight shift, the alternative boosting mechanism implies that even the delayed presentation of information that is nondiagnostic (i.e., neither favorable nor unfavorable) enhances preference for the alternative to which it pertains.

OVERVIEW OF EXPERIMENTS

We present evidence from five experiments that were designed to examine the impact of the delayed presentation of favorable information on consumer choice and to shed light on the mental mechanism(s) driving this effect. Experiment 1 demonstrates that delaying a favorable piece of information about an alternative until after the screening phase can indeed increase that alternative’s perceived attractiveness and choice share. Experiment 2 shows that the delayed presentation of information can cause dramatic preference reversals between alternatives, and it contrasts the influence of a delay of favorable information with that of unfavorable information. Experiment 3 illustrates the preference dynamics across decision stages—a delay of favorable information can increase an alternative’s ultimate choice share even when it significantly reduces that alternative’s chance of surviving the initial screening. The final two experiments examine the three distinct candidate mechanisms that might underlie the effect of the delayed presentation of favorable information on choice. Experiment 4 provides support for an alternative boosting mechanism by demonstrating that overall preference for an alternative increases even when the delayed information about it is nondiagnostic. Finally, experiment 5 rules out a recency effect but provides clear evidence in favor of a weight shift mechanism by showing that the influence of any attribute dimension on which information about one alternative is introduced with a delay is amplified across all surviving alternatives, irrespective of whether information about them on that dimension was delayed.

EXPERIMENT 1: DELAY OF FAVORABLE INFORMATION ENHANCES PREFERENCE

The objective of this experiment was to provide a first test of the hypothesized preference-enhancing effect of the delayed presentation of favorable information. A clear demonstration of this effect would be to show that, all else being equal, the choice share of a given alternative is greater when some favorable information about it is delayed until after the pre-choice screening has occurred than when this information is already available at the outset. Moreover, since the delayed presentation of information typically involves some highlighting of that information when it is eventually presented, it is important to disentangle the effect of information being delayed from that of it merely being highlighted. The results of an experiment designed to do so are reported in the discussion section for experiment 1.

Method

Task and Stimuli. Participants made a series of eight hypothetical hotel choices. They were instructed to imagine that they were planning to travel to eight European cities and that they were to choose a hotel for their stay in each of these cities. A two-stage decision paradigm was used. At the first (screening) stage, participants were presented with
describe the most promising hotels for further consideration in making their choice. Participants were informed that in some cases additional information about a hotel might become available later on. For some of the hotels, one piece of information was not presented at the first stage. At the second (choice) stage, any information about a surviving hotel that had been omitted at the first stage was shown along with all the information that had been presented previously. Participants were asked to indicate how attractive each of the two surviving alternatives would be, on an 11-point scale (0 = not at all attractive, 10 = extremely attractive). This process was repeated for each of the eight cities. (See the appendix for sample screen shots.)

All hotels were presented as being in the four-star category, and they were described in terms of nine attributes—price (i.e., nightly rate), room cleanliness, room size, bed quality, hotel service, hotel décor, restaurant, pool, and gym. The levels of the eight nonprice attributes were characterized as average customer ratings (based on a hotel’s evaluation by travelers who had recently stayed there) on a scale from 1.0 (poor) to 5.0 (excellent).

Experimental Design. Each choice set consisted of two focal and two filler alternatives. Conceptually, we refer to the two focal alternatives as “A” and “B,” irrespective of how they were labeled in the stimulus materials (“Hotel A,” “Hotel B,” “Hotel C,” and “Hotel D,” based on their randomly determined horizontal display positions). The focal alternatives were designed to be somewhat more attractive than the filler alternatives: the ratings of the nonprice attributes added up to 34 for each focal alternative (one 3.0, one 3.5, one 4.0, three 4.5s, and two 5.0s) and to 26 for each filler alternative (two 2.5s, three 3.0s, one 3.5, one 4.0, and one 4.5). Each of the two focal alternatives was better than the other on four of these attributes (with differences in customer ratings of 1.5, 1.5, 0.5, and 0.5) and worse on the remaining four attributes (with differences of −1.5, −1.5, −0.5, and −0.5). In each choice set, the price of the two focal alternatives was identical and this price was $5 less than that of the two filler alternatives.

Four different choice sets were created separately for each participant. While all choice sets were based on the common design described above, they were made unique by (randomly) assigning attribute dimension labels (e.g., “gym”) to the generic dimensions of that design. The four choice sets for a participant also differed in price levels. The prices of the focal and filler alternatives, respectively, were ($120, $125), ($140, $145), ($160, $165), or ($180, $185), and these price pairs were randomly assigned to the four choice sets.

Each of the four choice sets that had been created uniquely for a participant was presented to the latter twice—once with one favorable (nonprice) attribute rating delayed for alternative A but no delay for B and once with no delay for either of the two focal alternatives. Thus, we used a 2 (delay for A vs. no delay) × 4 (replications) within-subject design. When a piece of information about alternative A was introduced with a delay, the delayed rating was higher than the rating of alternative B on the same attribute dimension by 1.5 (i.e., ratings of 4.5 and 3.0 for A and B, respectively). In addition, the rating of one of the two filler alternatives on that dimension was also delayed.

Randomization. Apart from the random generation of the different choice sets for each participant, several additional factors were randomized. First, the order of the eight choice sets was determined at random for each participant. Second, the horizontal display positions of the four alternatives were randomized separately for each round of the task and for each participant. Third, the order in which the hotels’ nonprice attributes were listed was determined randomly for each participant and held constant across the eight rounds. (Price was always listed first.) Finally, the attribute dimension on which delay was to occur was selected randomly from the eight nonprice attributes for each round and for each participant. Randomizing separately for each participant (and, when feasible, for each choice set within participant) introduces variability in nuisance factors—for example, which attribute values are used for alternatives and the orders in which attributes and alternatives are presented—and ensures that the estimated effects of experimental factors apply irrespective of these nuisance factors (Montgomery 2005).

Dependent Measures. The key dependent variable on each of the eight rounds of the choice task are (1) a participant’s eventual choice between the two focal alternatives, A and B, and (2) his/her rating of the attractiveness of each of these alternatives.

Participants and Procedure. One-hundred and seventy-seven members of a consumer panel, all of whom were U.S. residents, participated in the experiment remotely using a Web-based interface. They were paid $4 for their participation (via the PayPal electronic payment system).

Results

We first examine the survival rates of the focal alternatives with respect to the initial screening and their eventual choice shares. These analyses are based on a generalized estimating equations (GEE) model, which is a generalized form of logistic regression for choices observed under a within-subject design (Carey 2007; Liang and Zeger 1986). Across the four rounds of the task with no delay for either of the two focal alternatives, A and B were equally likely to survive the screening stage (z = −1.42, p = .16). However, when one favorable piece of information was delayed for A, the latter was less likely to survive the screening (77.4% of the time, SE = 3.1) than B, for which all information was available at the outset (84.3%, SE = 3.1; z = −3.05, p = .002).

The choice probability of alternative A at the final stage conditional on both A and B having been selected for further consideration was considerably greater when a favorable piece of information about A had been delayed (62.9%, SE
DELAYED INFORMATION AND CHOICE

1009

FIGURE 1
DELAYED PRESENTATION OF FAVORABLE INFORMATION INCREASES CHOICE PROBABILITY (EXPERIMENT 1)

Choice Shares

45.6% 44.2% 50.7% 40.3%
A(0) B(0) A(+) B(0)
No Delay Delay for A

FIGURE 2
DELAYED PRESENTATION OF FAVORABLE INFORMATION INCREASES PERCEIVED ATTRACTIVENESS (EXPERIMENT 1)

Discussion

The results of experiment 1 provide support for the proposed preference-enhancing influence of the delayed presentation of favorable information. They do so by showing that a delay in the arrival of one favorable piece of information about an alternative can cause an increase in both the choice probability and the perceived attractiveness of that alternative.

One aspect of our manipulation of delay is that the delayed pieces of information are visually highlighted when they are presented at the final choice stage (see the appendix). Although some form of highlighting is typically inherent to the delayed presentation of information, it is important to show that the effect of the latter is not simply due to highlighting. To that end, we ran an additional experiment—using the same procedure as experiment 1—that included a condition where favorable pieces of information were merely highlighted at the final choice stage without having been delayed. A separate sample of 351 members of the same consumer panel were randomly assigned to one of the conditions of a 3 (between subjects: delay for A vs. highlighting for A vs. control) × 4 (within subject: replications) mixed design. The delay and control (i.e., “no delay”) conditions were the same as before. In the highlighting condition, instead of being delayed, the same favorable piece of information about alternative A was already presented at the screening stage and then merely highlighted at the final choice stage. This highlighting was exactly the same as that for the delayed information. To ensure full comparability,
each ensemble of four randomly generated choice sets was used for one participant in each of the three between-subjects conditions.

The unconditional choice share of alternative A was significantly greater when a favorable piece of information about it had been delayed (53.2%, $SE = 3.8$) than in the control condition (44.7%, $SE = 3.8; z = 2.32, p = .02$), replicating the findings of experiment 1. Critically, the mere highlighting of the same information at the final choice stage did not result in a greater choice share of A (45.9%, $SE = 3.8$) relative to the control condition ($z = 0.34, p = .73$), and the choice share of A was significantly lower under highlighting than under delay ($z = 2.01, p = .04$). Ratings of the alternatives’ attractiveness reveal the same pattern of results—the delayed presentation of a favorable piece of information about A significantly increased the perceived attractiveness of A (relative to B) compared to both the highlighting ($t = 2.37, p = .02$) and the control ($t = 2.50, p = .01$) conditions, with no difference between highlighting and control ($t = 0.11, p = .92$). The results of this additional experiment clearly indicate that the preference-enhancing effect of the delayed presentation of favorable information is not driven by the highlighting of that information at the final choice stage.

EXPERIMENT 2: INFORMATION DELAY AND PREFERENCE REVERSALS

Experiment 2 was designed to achieve several objectives. The first was to demonstrate the preference-enhancing impact of the delayed presentation of favorable information in the context of consequential, rather than hypothetical, choices. In addition, we sought to show that it is possible to reverse the relative choice shares of two alternatives merely by varying for which of them information is delayed until the final choice stage. Moreover, although this is not our focus, in this experiment we also examined how delaying some unfavorable information about an alternative affects its probability of being chosen, thus contrasting the influence of a delay of favorable information with that of unfavorable information.

Method

Task and Stimuli. A principal-agent choice paradigm was employed in this experiment. Participants were instructed to assume the role of an agent responsible for selecting apartments for a number of incoming university exchange students according to the latter’s preferences. They made a series of 16 choices. As in experiment 1, each of these decisions involved two stages—a screening stage at which participants were to select the two most promising alternatives from a set of four apartments, followed by a choice stage at which any delayed information about a surviving alternative was displayed along with the previously presented information and participants made their final choice.

The apartments were described in terms of nine binary attributes: monthly rent (lower vs. higher, with a difference of $\$30$), location (on campus vs. a 10-minute walk from campus), size (around 500 square feet vs. around 400 square feet), furniture (furnished vs. unfurnished), floor (third floor or higher vs. below the third floor), TV (satellite vs. cable), parking (indoor heated vs. outdoor), location of the nearest laundry facility (same vs. different building), and balcony (yes vs. no). The exchange students’ preferences were characterized in terms of which of the two levels of each of these attribute dimensions they deemed more desirable. The first level, as listed above, was always preferred to the second one. The students’ preferences, as described to participants, were such that all attributes were independent and additive (i.e., there were no interactions between attributes), and the attractiveness of the more desirable relative to the less desirable attribute level was equal across all attribute dimensions. That is, the exchange students valued each of the more desirable levels of the nonprice attributes equally, and they were indifferent between each of these and a $\$30$ reduction in monthly rent.

Experimental Design. Each choice set consisted of two focal and two filler alternatives. The two focal alternatives, which we refer to as A and B, were designed to be equally attractive given the exchange students’ preference, whereas the filler alternatives were considerably less attractive. The levels of each attribute dimension were randomly assigned to each of the four alternatives in a given choice set subject only to the restriction that the focal (filler) alternatives had exactly seven (two) favorable attribute levels and that the two focal alternatives had unfavorable levels on different dimensions.

Eight choice sets were created separately for each participant. While all choice sets were based on the common design described above, they were made unique by (randomly) assigning attribute dimension labels (e.g., “location” to the generic dimensions of that design. Each of the eight choice sets that had been created uniquely for a participant was presented twice—one with two pieces of information delayed for alternative A (no delay for B) and once with two pieces delayed for alternative B (delay for A). In addition, the two pieces of delayed information were favorable for half of these eight choice sets and unfavorable for the other half. Thus, we used a 2 (delay for A vs. B) × 2 (delay of favorable vs. unfavorable information) × 4 (replications) within-subject design. To ensure differences across alternatives on the attribute dimensions that were subject to delay, the corresponding attribute levels of the focal alternative for which no information was delayed were always of the opposite valence relative to those that were delayed. Two pieces of information—one favorable and one unfavorable—were also delayed for one of the filler alternatives in each choice set.

Randomization. As in experiment 1, in addition to the random generation of the different choice sets for each participant, the following factors were randomized: the order of the choice sets, the display positions of the alternatives, the order in which the attributes were listed (price was al-
The analysis of which alternatives survived the initial screening and of which alternative was ultimately chosen on each of the 16 rounds of the task is based on GEE models. First, the two focal alternatives were equally likely to survive the screening stage, and this was the case both when favorable information \((z = -1.07, p = .28)\) and when unfavorable information \((z = 0.76, p = .45)\) about one of them was delayed.

To examine the effect of information delay on final choice, we estimated a model with choice of A as the dependent variable and with the alternative for which the delay occurred (A vs. B), the valence of the delayed information (favorable vs. unfavorable), and replication as independent variables. The interaction between alternative and valence is significant \((z = 7.69, p < .001)\), whereas all other effects in this model are not—that is, the main effects of alternative \((z = 1.68, p = .09)\), valence \((z = -0.93, p = .35)\), and replication \((z = 0.33, p = .74)\), the two-way interactions between alternative and replication \((z = -0.75, p = .45)\) and between valence and replication \((z = -0.21, p = .83)\), and the three-way interaction \((z = 0.89, p = .37)\).

When favorable information about alternative A had been delayed, the unconditional choice share of A was greater (71.2%, SE = 6.2) than that of B (27.8%, SE = 6.2; \(z = 6.63, p < .001\)). Similarly, when favorable information about alternative B had been delayed, the unconditional choice share of B was greater (67.0%, SE = 6.5) than that of A (32.5%, SE = 6.5; \(z = -4.26, p < .001\)). By contrast, when unfavorable information about alternative A had been delayed, the unconditional choice share of A was smaller (39.2%, SE = 6.5) than that of B (60.8%, SE = 6.5; \(z = -3.61, p < .001\)), and when unfavorable information about B had been delayed, B’s unconditional choice share dropped to 33.0% (SE = 6.7) that of A increased to 67.0% (SE = 6.7; \(z = 4.29, p < .001\)). These preference reversals are visualized in figure 3. (All choice shares are significantly greater/smaller than 50% with \(p\)-values < .001.)

Discussion

The results of experiment 2 demonstrate that it is possible to reverse the relative choice shares of two alternatives by merely influencing at what stage of the choice process some of the information about one of them becomes available. Delaying the presentation of some favorable (unfavorable) information about a particular alternative until the final choice stage can have a strong positive (negative) impact on ultimate preference for that alternative.

As a test of the robustness of the positive effect of the delayed presentation of favorable information, we conducted an additional experiment to examine the possibility that even an objectively inferior alternative might benefit from such a delay. Six different choice sets were created uniquely for each of 65 participants in the same way as in experiment 2, with the only difference that alternative A was constructed to be objectively inferior to alternative B in that monthly rent was $10 higher for A than for B. Each of the six choice sets was presented to a participant twice—once with two favorable pieces of information delayed for A and once with no delay for either of the two focal alternatives. The unconditional choice share of alternative A was significantly greater when favorable information about it was delayed (42.6%, SE = 6.3) than when there was no such delay (29.7%, SE = 6.3; \(z = 4.39, p < .001\)). These results demonstrate that the delay of favorable information can increase preference for an alternative even in the presence of an objectively superior competitor.

EXPERIMENT 3: INTERSTAGE PREFERENCE DYNAMICS

The objective of experiment 3 was to demonstrate that it is possible to increase the ultimate (i.e., unconditional) choice share of an alternative by delaying some favorable infor-
mation about it until the final choice stage even if doing so significantly lowers the alternative’s chance of surviving the initial screening. That is, our aim was to show that the positive influence of the delayed presentation of favorable information on an alternative’s (conditional) probability of being selected at the final choice stage can more than compensate for a substantial reduction in its probability of surviving the screening stage.

Method

Task and Stimuli. The general paradigm was the same as that employed in experiment 2. Participants made a series of 12 choices from sets of four apartments. To ensure that the delay of favorable information about an alternative resulted in a significant reduction in that alternative’s chance of surviving the initial screening, the difference in attractiveness between focal and filler alternatives was reduced relative to experiment 2. Moreover, the number of delayed pieces of information was increased (and manipulated) in this experiment.

Experimental Design. In each choice set, the two focal alternatives, A and B, were characterized by five favorable and four unfavorable attribute levels, whereas the two filler alternatives were described by one favorable and eight unfavorable attribute levels. Twelve choice sets were created separately for each participant using the same general procedure as in experiment 2. We used a 2 (number of favorable pieces of information delayed for A: two vs. three) × 6 (replications) within-subject design. Thus, on each round of the task, either two or three pieces of information about alternative A were delayed until the final choice stage, whereas all information about B was already available at the screening stage. In addition, two pieces of information—one favorable and one unfavorable—were delayed for one of the filler alternatives in each choice set.

Participants and Procedure. Seventy-five undergraduate students at a major North American university participated in the experiment for partial course credit. The procedure was the same as in experiment 2, and a monetary reward was again provided to make the task consequential—participants were informed in advance that they would receive $.25 for every choice they made such that the selected alternative was no less attractive than any of the other available alternatives. They received this reward every time they chose either A or B.

Results

We begin by examining choices from sets in which the presentation of two favorable pieces of information about alternative A was delayed. Across the six rounds of the task where this was the case, B survived the screening stage 96.3% (SE = 3.0) of the time, whereas A survived only 89.2% (SE = 3.0) of the time. That is, as a result of the delay of some favorable information about it, A had a significantly lower probability of being included in the set of alternatives that were given serious consideration than did B (GEE model: \(z = -4.02, p < .001 \)). At the final choice stage, however, when both A and B had been selected for further consideration, alternative A (based on its complete description) was chosen 66.0% of the time. More importantly, the unconditional choice share of alternative A was 60.0% (SE = 3.8), which is significantly greater than that
of B (39.6%, SE = 3.8; z = 4.84, p < .001). Thus, while the delay of favorable information decreased A’s chance of surviving the screening, it actually increased its ultimate (unconditional) probability of being chosen.

The above results are corroborated by those for the choice sets in which three favorable pieces of information about alternative A were delayed. As illustrated in figure 4, across these six rounds of the task, alternative B survived the initial screening 97.0% of the time (SE = 5.7), whereas A survived only 78.8% of the time (SE = 5.7; z = −6.70, p < .001). However, even in this case, alternative A more than overcame the significant disadvantage it suffered at the screening stage once all information about it was presented. The choice share of alternative A conditional on both A and B surviving the screening was 72.0% and, more importantly, A’s unconditional choice share was 57.7% (SE = 3.3), whereas that of B was only 42.2% (SE = 3.3; z = 3.85, p < .001). Due to the delay of favorable information about it, alternative A again suffered a disadvantage at the screening stage, which it more than overcame at the final choice stage.

Discussion

The findings of experiment 3 illustrate the preference dynamics across the stages of the decision process associated with delaying the presentation of some favorable information about an alternative—such a delay reduces the probability of the alternative surviving the initial screening, but it increases its choice probability conditional on having survived the screening. When the latter (preference-enhancing) effect dominates, the delayed presentation of favorable information has a positive overall effect on the alternative’s choice share, as was the case in this experiment. However, this is limited to a “sweet spot” (in terms of the amount of delayed information) beyond which the interplay between these two opposing forces does not result in an increase in the unconditional choice probability of the alternative about which information is delayed. In particular, the delay of too much favorable information will render an alternative so unlikely to survive the screening that the benefit of the additional information introduced at the final choice stage is not sufficient to offset the harm done at the screening stage.

To examine this boundary condition, we ran a version of experiment 3 (with 87 participants) in which we increased the attractiveness of the filler alternatives by using two favorable and seven unfavorable attribute levels to characterize each of them. In this case, when three favorable pieces of information about alternative A were delayed, the latter was much less likely to survive the screening (42.0% of the time, SE = 5.8) than B (96.9%, SE = 5.8; z = −11.28, p < .001), and A’s ultimate (unconditional) choice share based on its complete description (21.3%, SE = 4.7) was also significantly lower than B’s (45.2%, SE = 4.7; z = 3.85, p < .001). This demonstrates that delaying a substantial amount of favorable information can backfire—the harm suffered in terms of the alternative’s probability of surviving the screening may be so severe that it turns out to be irrecoverable at the final choice stage.

Our focus now shifts to examining the three mental mechanisms that might underlie the preference-enhancing influence of the delayed presentation of favorable information about an alternative: recency, weight shift, and alternative boosting. Experiments 4 and 5 were designed to disentangle and test these candidate mechanisms.

EXPERIMENT 4: ALTERNATIVE BOOSTING

Experiment 4 was designed to examine whether the preference-enhancing effect of delaying favorable information about an alternative is driven, at least in part, by what we refer to as the “alternative boosting” mechanism. This candidate mechanism suggests that the mere fact that new information about an alternative becomes available at the final choice stage increases preference for that alternative by making it more salient. To test this mechanism, we created a situation in which the presentation of one favorable and one unfavorable piece of information was delayed for one of the focal alternatives, whereas all information about the other one was already available at the screening stage. In our experimental paradigm, the two delayed pieces of information cancel each other out. Therefore, neither recency nor weight shift can account for an effect of such a delay on ultimate preference between the two focal alternatives. By contrast, alternative boosting does predict an effect—the delayed presentation of one favorable and one unfavorable piece of information about an alternative should increase that alternative’s choice share merely as a consequence of
some new (albeit nondiagnostic) information about it becoming available at the final choice stage.

Method

Task and Stimuli. The general paradigm was the same as that employed in experiment 2. Participants made a series of eight choices from sets of four apartments.

Experimental Design. In each choice set, the two focal alternatives, A and B, were described by seven favorable and two unfavorable attribute levels, whereas the two filler alternatives had two favorable and seven unfavorable attribute levels. Eight choice sets were created separately for each participant using the same general procedure as in experiment 2. In all of these choice sets, the presentation of one favorable and one unfavorable piece of information about alternative A was delayed until the final choice stage, whereas all information about B was already available at the screening stage. We varied whether the attribute levels of B on the dimensions for which information about A was delayed were of the same or opposite valence relative to those of A, although we did not expect this to have an effect on choice. Thus, the experiment was based on a 2 (valence of corresponding attribute levels of B: same vs. opposite) × 4 (replications) within-subject design. Finally, two pieces of information—one favorable and one unfavorable—were also delayed for one of the filler alternatives in each choice set.

Participants and Procedure. Fifty-two members of a consumer panel maintained by a major North American university participated in the experiment. The procedure was the same as in experiment 2. Participants received a guaranteed compensation of $10, as well as a reward of $.25 every time they chose an alternative (i.e., A or B) that was no less attractive than any of the other available alternatives.

Results and Discussion

Participants made a total of 416 decisions. For 92.5% of these, both focal alternatives survived the screening phase. The survival rate of A (93.8%, SE = 2.0) was lower than that of B (98.1%, SE = 2.0; z = 2.66, p = .008). Participants’ choices between the two focal alternatives at the final stage were analyzed by estimating a GEE model.

The key prediction implied by the alternative boosting mechanism is that the delayed presentation of information about alternative A that is nondiagnostic (i.e., one favorable and one unfavorable piece) causes a higher overall choice probability for A relative to B, whereas neither of the other candidate mechanisms—recency and weight shift—would predict any difference in choice shares between the two focal alternatives. The results provide clear support for the alternative boosting mechanism. The overall choice share of A (57.4%, SE = 6.9) was significantly greater than that of B (42.6%, SE = 6.9; z = 2.59, p = .005), and this was true irrespective of the valence of the attribute levels of B on the dimensions for which information about A was delayed (z = 1.04, p = .300). Thus, while the favorable and unfavorable pieces of information about alternative A that were delayed canceled each other out, this delay nonetheless caused a substantial boost in preference for A merely as a result of some new, albeit nondiagnostic, information about it becoming available at the final choice stage.

EXPERIMENT 5: RECENCY EFFECT AND WEIGHT SHIFT

The objective of experiment 5 was to examine the two other candidate mechanisms that might underlie the preference-enhancing effect of the delayed presentation of favorable information. The key conceptual difference between a weight shift and a recency effect is that the former is global whereas the latter is local. A weight shift mechanism implies that information on an attribute dimension becomes more important for all surviving alternatives upon the delayed presentation of information (about one alternative) on that dimension. By contrast, a recency effect suggests that only the specific pieces of information that are presented with delay become more important. To disentangle these two candidate mechanisms, we created conditions under which they imply distinct predictions.

Method

Task and Stimuli. The general paradigm was the same as in the previous experiments. Participants made a series of 24 choices from sets of four apartments.

Experimental Design. In each choice set, the focal alternatives, A and B, were characterized by five favorable and four unfavorable attribute levels, whereas the two filler alternatives were described by two favorable and seven unfavorable attribute levels. Twenty-four choice sets were created for each participant using the same procedure as in the previous experiments. In all of these choice sets, the presentation of two pieces of information was delayed for both A and B, with this delay occurring on different attribute dimensions for A than for B in a given choice set. The patterns of delayed information were carefully designed to allow us to disentangle the weight shift and recency mechanisms. They were manipulated across choice sets to create the following three conditions (see table 1).

First, in the delay of favorable information for both A and B condition, two favorable pieces of information about A were delayed, and the corresponding levels of the same attribute dimensions for B, which were already available at the screening stage, were of the opposite valence (i.e., unfavorable). In addition, two favorable pieces of information were delayed for B, with the corresponding (nondelayed) levels of these attribute dimensions for A having the same valence (i.e., favorable). Weight shift and recency imply different predictions for this condition. Under a weight shift mechanism, the choice share of A would be greater than that of B as the corresponding levels of B on the attribute dimensions for which favorable information about A was delayed...
TABLE 1

EXPERIMENT 5: DESIGN AND PREDICTIONS

<table>
<thead>
<tr>
<th>Alternative A</th>
<th>Alternative B</th>
<th>Alternative A</th>
<th>Alternative B</th>
<th>Alternative A</th>
<th>Alternative B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay of (+)</td>
<td>Delay of (+)</td>
<td>Delay of (+)</td>
<td>Delay of (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A and B</td>
<td>A and B</td>
<td>A and B</td>
<td>A and B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute 1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Attribute 2</td>
<td>(+)</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Attribute 3</td>
<td>(–)</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Attribute 4</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Attribute 5</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Attribute 6</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Attribute 7</td>
<td>–</td>
<td>+</td>
<td>(–)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Attribute 8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Attribute 9</td>
<td>(–)</td>
<td>(–)</td>
<td>(–)</td>
<td>(–)</td>
<td></td>
</tr>
</tbody>
</table>

Choice-share predictions for weight shift

A > B

Choice-share predictions for recency effect

A = B

A < B

A = B

A > B

NOTE.—The + and – symbols represent favorable and unfavorable pieces of information about an alternative on an attribute dimension. Parentheses indicate the delay of a piece of information until after the pre-choice screening has occurred. The specific choice sets were generated by randomizing the assignment of attribute dimension labels (e.g., “balcony”) to the generic attribute dimensions of the above design, the nonprice attribute dimensions on which delay was to occur, and the horizontal display positions of the four alternatives independently for each round of the task and for each participant. Moreover, the order in which the alternatives’ nonprice attributes were listed was determined at random for each participant, and it was held constant across all rounds. Finally, the order of the choice sets was randomized for each participant.

delayed were unfavorable, while the delayed favorable information about B was matched by corresponding favorable attribute levels of A. By contrast, a recency effect implies that both alternatives would benefit equally from the delay, so that the latter would have no systematic influence on choice shares.

In the delay of unfavorable information for both A and B condition, two unfavorable pieces of information about A were delayed, with the corresponding attribute levels of B having the opposite valence (i.e., favorable). Moreover, two unfavorable pieces of information were delayed for B, with the corresponding levels of A having the same valence (i.e., unfavorable). Weight shift and recency offer distinct predictions for this condition as well. A weight shift would cause the choice share of B to be greater than that of A since the corresponding levels of B on the attribute dimensions for which unfavorable information about A was delayed were favorable, while the delayed unfavorable information about B was matched by unfavorable attribute levels of A. In contrast, a recency effect implies that this delay would not affect choice shares since both alternatives would suffer equally as a result of the delay.

Finally, in the delay of favorable information for A and unfavorable information for B condition, two favorable pieces of information about A were delayed, and the corresponding attribute levels of B had the same valence (i.e., favorable). In addition, two unfavorable pieces of information were delayed for B, with the corresponding attribute levels of A also having the same valence (i.e., unfavorable). Weight shift and recency again imply distinct predictions. A weight shift would not affect choice shares as all delayed pieces of information were matched by equal (nondelayed) attribute levels of the other alternative. However, a recency effect would selectively benefit alternative A and, thus, result in an increase in the choice share of A relative to B in this condition.

Thus, a 3 (delay of favorable information for both A and B vs. delay of unfavorable information for both A and B vs. delay of favorable information for A and delay of unfavorable information for B) × 8 (replications) within-subject design was used in this experiment. In all conditions, two attribute levels—one favorable and one unfavorable—were also delayed for one of the filler alternatives in each choice set.

Participants and Procedure. Ninety-six members of a consumer panel maintained by a major North American university participated in the experiment. The procedure (including the monetary rewards) was the same as in experiment 4.

Results and Discussion

Participants made a total of 2,304 decisions. For 85.7% of these, both focal alternatives survived the screening. Participants’ choices between these two alternatives were again analyzed by estimating a GEE model. In the delay of favorable information for both A and B condition, the choice share of alternative A (55.5%; SE = 5.1) was significantly greater than that of B (44.5%; SE = 5.1; z = 3.05, p < .01). By contrast, in the delay of unfavorable information for both A and B condition, the choice share of alternative B (54.7%; SE = 5.1) was significantly greater than that of A (45.3%; SE = 5.1; z = −2.71, p < .01). Finally, in the delay of favorable information for A and delay of unfavorable information for B condition, there was no difference between the choice share of A (51.3%; SE = 5.1) and that...
of B (48.7%, SE = 5.1; z = 1.56, p > .1; see fig. 5). This pattern of results provides overwhelming evidence of a weight shift mechanism, whereas it is entirely inconsistent with a recency effect. In each of the three conditions, the observed presence or absence of a difference in choice shares between the focal alternatives supports the prediction implied by a weight shift and rejects the recency-based prediction.

Taken together, the findings of experiments 4 and 5 indicate that a combination of the alternative boosting and weight shift mechanisms underlies the preference-enhancing effect of delaying the presentation of favorable information. First, introducing additional information about an alternative after the initial screening has been completed boosts preference for that alternative by increasing the latter’s salience relative to a competing alternative for which no new information becomes available at the final choice stage. In addition to this alternative boosting effect, the decision weight of an attribute dimension on which information is delayed until the final choice stage increases and, consequently, alternatives that have a favorable attribute level on that dimension—including the alternative for which favorable information was delayed—become more likely to be chosen.

FIGURE 5
WEIGHT SHIFT SUPPORTED, RECENCY EFFECT NOT SUPPORTED (EXPERIMENT 5)

<table>
<thead>
<tr>
<th>Choice Shares</th>
<th>A(+)</th>
<th>B(+)</th>
<th>A(-)</th>
<th>B(-)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55.5%</td>
<td>44.5%</td>
<td>45.3%</td>
<td>54.7%</td>
</tr>
<tr>
<td></td>
<td>51.3%</td>
<td>48.7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE.—The bottom row of pluses and minuses indicates the valence of the (nondelayed) pieces of information about an alternative on those attribute dimensions for which information about the other focal alternative was delayed. For instance, in the first condition (i.e., delay of favorable information for A and B), the attribute levels for A on the dimensions for which information about B was delayed were favorable, and the attribute levels for B on the dimensions for which information about A was delayed were unfavorable.

GENERAL DISCUSSION

This article introduces, and provides evidence in support of, the idea that the timing of the presentation of specific pieces of information about an alternative across the stages of the decision process systematically affects consumer choice. In particular, this research demonstrates that delaying the presentation of some favorable information about an alternative until after consumers have completed their pre-choice screening can increase the probability of that alternative being chosen. The preference-enhancing effect of the introduction of additional information at the final choice stage will often be strong enough to more than offset the harm suffered in terms of the alternative’s reduced probability of surviving the screening. However, this positive overall effect is limited to a “sweet spot” with respect to the amount of favorable information about an alternative that is delayed, such that delaying too much of it will result in a disadvantage at the screening stage that is irrecoverable.

The results of experiment 1 provide a first demonstration of the preference-enhancing effect of the delayed presentation of favorable information, and they do so in terms of both ratings of product attractiveness and product choice.
Moreover, this effect is not merely due to the highlighting of the additional information introduced at the final choice stage that is inherent to its delayed presentation. Experiment 2 shows that this effect can result in a dramatic reversal in the relative choice shares of two alternatives, and it also contrasts the influence of a delay of favorable information with that of unfavorable information about an alternative. Experiment 3 demonstrates that delaying the presentation of favorable information about an alternative can increase the latter’s ultimate choice share even if this significantly reduces the alternative’s chance of surviving the initial screening, thus illustrating the phenomenon’s inherent preference dynamics across decision stages.

The final two experiments examine the mental mechanisms that underlie the preference-enhancing effect of the delayed presentation of favorable information about an alternative. We tested three distinct candidate mechanisms: a recency effect, an increase in the decision weights of the attribute dimensions on which information is presented with some delay (weight shift), and an overall preference boost for the alternative about which information is delayed (alternative boosting). Our results provide strong support for an alternative boosting mechanism by demonstrating that preference for an alternative increases merely as a result of some new information about it becoming available at the final choice stage (experiment 4). Moreover, our findings show that the effect of the delayed presentation of favorable information is not driven by a recency effect (i.e., it is not simply due to increased impact of the specific pieces of information that are introduced after screening), but they do provide clear evidence of a weight shift mechanism by showing that the influence of any attribute dimension on which information about one alternative is introduced with a delay is amplified across all surviving alternatives, irrespective of whether information about them on that dimension was delayed (experiment 5).

The present work significantly enhances our understanding of how consumers process and integrate product information in the context of two-stage decisions. Our findings deepen those of prior research that has suggested that post-screening information tends to play a more important role than pre-screening information in decision makers’ evaluations of alternatives (Chakravarti et al. 2006; Van Zee et al. 1992). An important distinction between the current work and these prior studies is that, in the latter, additional post-screening information was provided for all alternatives that had survived the screening stage. The key contribution of the present research is that it is the first to examine the influence of the delayed presentation of information about one of the considered alternatives. In particular, our findings provide insight into how sellers or other persuaders might influence choice behavior by strategically delaying the presentation of favorable information about their offering or cause.

Another important contribution of the research presented here is that it systematically disentangles three candidate mental mechanisms that might underlie the increased influence of post-screening information, whereas the prior studies by Chakravarti et al. (2006) and Van Zee et al. (1992) did not permit such a fine-grained analysis. It is interesting to note that, while the results of Van Zee et al. (1992) appear to be consistent with a recency effect (i.e., information received later had a stronger impact on evaluations, irrespective of whether screening had taken place), we do not find support for a (strict) recency effect in our experiments.

Finally, our findings provide a novel perspective on persuasion processes more generally. In particular, they demonstrate that the common intuition that it is beneficial to “put your best foot forward” and make the strongest possible case early on does not hold in general. Indeed, the present research shows that, for a given set of information (consisting of some combination of favorable and unfavorable pieces), it is possible to increase the ultimate success of a persuasion attempt by deliberately delaying some of the strongest arguments, particularly when the target individual uses a multistage process to arrive at a final decision. This insight has important implications for persuasion-directed communication in a wide variety of domains.
APPENDIX
SAMPLE SCREEN SHOTS (EXPERIMENT 1)

FIGURE A1
SCREENING

City 1:
Select the 2 Most Attractive Candidates

Below are the descriptions of four hotels in City 1. They contain the average customer ratings of the hotels (provided by travelers who recently stayed there) in terms of various aspects. All customer ratings are on a scale from 1 (poor) to 5 (excellent). The prices listed are for a standard room with two queen beds.

Please examine the descriptions of these four hotels carefully, and then select the two that you think are the most attractive candidates and that you therefore would like to give further consideration to (by clicking the boxes below their descriptions).

<table>
<thead>
<tr>
<th>Hotel A</th>
<th>Hotel B</th>
<th>Hotel C</th>
<th>Hotel D</th>
</tr>
</thead>
</table>

☐ Consider Hotel A ☐ Consider Hotel B ☐ Consider Hotel C ☐ Consider Hotel D

[Click to Continue]
REFERENCES

Corrections.—Since this article was published online on August 15, 2011, corrections have been made. In table 1 the column headings have been corrected. These changes were made in both the online and print versions of the article. Corrected on September 12, 2011.